Bollobás Set k-tuples

Jason O'Neill
Joint work with Jacques Verstraete
UC San Diego Combinatorics Seminar

March 12, 2019

Talk Overview

In this talk, we will discuss the following topics:

1 Bollobás set pairs
2 Erdős, Goodman and Pósa Correspondence
3 Bollobás set triples
4 Bollobás set k-tuples
5 Biclique covering numbers of Hypergraphs

Antichains in Boolean Lattice

Definition

Given a set family $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\} \subseteq 2^{[n]}$, we say \mathcal{A} is an antichain if for all $i \neq j \in[m]$, we have that $A_{i} \subsetneq A_{j}$.

Given $n \in \mathbb{N}$, how large can an antichain $\mathcal{A} \subseteq 2^{[n]}$ be?

Theorem (Sperner)
If $\mathcal{A} \subseteq 2^{[n]}$ is an antichain, then we have that $|\mathcal{A}| \leq\binom{ n}{\left[\frac{n}{2} 7\right.}$

Bollobás set pairs

Definition

Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ be families of finite sets, such that $A_{i} \cap B_{j} \neq \emptyset$ if and only if $i, j \in[m]$ are distinct, then we say that the pair $(\mathcal{A}, \mathcal{B})$ is a Bollobás set pair of size m and write $|(\mathcal{A}, \mathcal{B})|=m$.

Given an antichain $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$, and by letting $B_{i}:=A_{i}^{C}$, we see that $\mathcal{B}:=\left\{B_{1}, \ldots, B_{m}\right\}$ is so that $(\mathcal{A}, \mathcal{B})$ is a Bollobás set pair.

Fixing the ground set [n], one can also ask what is

$$
\beta_{2,2}(n):=\max \{|(\mathcal{A}, \mathcal{B})|:(\mathcal{A}, \mathcal{B}) \text { Bollobás set pair }\} .
$$

Bollobás set pairs Inequality

Theorem (Bollobás-Lubell-Meshalkin-Yamamoto)

Let $(\mathcal{A}, \mathcal{B})$ be a Bollobás set pair of size m, then

$$
\begin{equation*}
\sum_{i=1}^{m}\binom{\left|A_{i} \cup B_{i}\right|}{\left|A_{i}\right|}^{-1} \leq 1 \tag{1}
\end{equation*}
$$

We have equality in Equation (1), by taking $\mathcal{A}=[n]^{(k)}:=\{A \subseteq[n]:|A|=k\}$ and letting $\mathcal{B}=[n]^{(n-k)}$ be the corresponding compliments.

Equation (1) also yields that $\beta_{2,2}(n)=\binom{n}{\left[\frac{n}{2}\right\rceil}$.

Lovász Geometric Analog

Theorem (Lovász)

Let A_{1}, \ldots, A_{m} be r-dimensional subspaces and B_{1}, \ldots, B_{m} be be t-dimensionals subspaces of a vector space V so that $\operatorname{dim}\left(A_{i} \cap B_{j}\right)=0 \Longleftrightarrow i=j$. Then $m \leq\binom{ r+t}{t}$

Very rough sketch of proof.

After some geometric reductions involving projections, we may assume the rank of the V is $r+t$. Now, the r-dimensional subspace A_{i} have a corresponding r vector \hat{A}_{i} in the exterior power $\Lambda^{r}(V)$ and the above conditions combined with the wedge product in the exterior algebra shows that $\left\{\hat{A}_{i}\right\}$ are linearly independent.

Erdős, Goodman and Pósa (EGP) Correspondence

Figure: Consider the bipartite graph $K_{n, n} \backslash M$ with parts
$U=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and consider covering this graph with complete bipartite graphs.

We have that $K_{n, n} \backslash M=\left\{\left(u_{i}, v_{j}\right): i \neq j\right\}$. Suppose we have that $\left\{\mathcal{C}_{i}\right\}_{i \in[m]}$ is such a covering of $K_{n, n} \backslash M$.

EGP Correspondence Cont.

Figure: Given our covering $\left\{\mathcal{C}_{i}\right\}_{i \in[m]}$, we may form $(\mathcal{A}, \mathcal{B})$ in the following manner. Equivalently, we have that $A_{i}=\left\{j: \mathcal{C}_{j}\right.$ contains $\left.u_{i}\right\}$ and $B_{i}=\left\{j: \mathcal{C}_{j}\right.$ contains $\left.v_{i}\right\}$.

Claim

$(\mathcal{A}, \mathcal{B})$ is a Bollobás set pair of size n on ground set $[m]$.

EGP Correspondence Cont.

Proof.

We have that $A_{i} \cap B_{i}=\emptyset$ since otherwise there exists a cover \mathcal{C}_{j} which covers u_{i} and v_{i} but $\left(u_{i}, v_{i}\right) \in M$. We have that for $i \neq j$ that $A_{i} \cap B_{j} \neq \emptyset$ since we necessarily cover the edge $\left(u_{i}, v_{j}\right)$ with at least one of our covers \mathcal{C}_{j}.

Letting $b c(G)$ be the number of bipartite graphs need to cover G,

$$
b c\left(K_{n, n} \backslash M\right)=\min \left\{m: \beta_{2,2}(m) \geq n\right\}=\min \left\{m:\binom{m}{\left\lceil\frac{m}{2}\right\rceil} \geq n\right\}
$$

Orlin used EGP correspondence to determine the similarly defined clique covering number of $K_{n, n} \backslash M$.

Biclique covering number

Figure: Consider a k-uniform k-partite hypergraphs \mathcal{C} where $E(\mathcal{C}):=\left\{x_{1, i_{1}} x_{2, i_{2}} \cdots x_{k, i_{k}}: i_{1} \in A_{1}, i_{2} \in A_{i}, \ldots, i_{k} \in A_{k}\right\}$

Given a k-uniform hypergraph H, define

$$
\mathrm{bc}(H):=\min \left\{m: \bigcup_{i=1}^{m} E\left(\mathcal{C}_{i}\right)=H\right\}
$$

Biclique covering number Cont.

Consider the k-uniform complete hypergraph K_{n}^{k}. When $k=2$, we have that $b c\left(K_{n}^{2}\right)=\log _{2}(n)$, but for general k this is more challenging.

Körner and Marston show using the powerful notion of hypergraph entropy that $b c\left(K_{n}^{k}\right) \geq\left(\log \frac{n}{k-1}\right) /\left(\log \frac{k}{k-1}\right)$.

However, for $n \geq 3$, the limiting value of $b c\left(K_{n}^{k}\right) / \log n$ as $n \rightarrow \infty$ is not known.

Bollobás set triples

Consider three set families $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}, \mathcal{B}=\left\{B_{1}, \ldots, B_{m}\right\}$, and $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$. Generalizing to Bollobás set triples, it seems pretty clear that we should have $A_{i} \cap B_{i} \cap C_{i}=\emptyset$ and $A_{i} \cap B_{j} \cap C_{k} \neq \emptyset$ where $|\{i, j, k\}|=3$.

However, it is unclear what we should impose on $A_{i} \cap B_{i} \cap C_{j}$ or in general $A_{i_{1}} \cap B_{i_{2}} \cap C_{i_{3}}$ with $\left|\left\{i_{1}, i_{2}, i_{3}\right\}\right|=2$.

We will first consider Bollobás set triples of threshold $t=2$ so that $A_{i_{1}} \cap B_{i_{2}} \cap C_{i_{3}} \neq \emptyset \Longleftrightarrow\left|\left\{i_{1}, i_{2}, i_{3}\right\}\right| \geq 2$.

Bollobás set triples of Threshold $t=2$

Theorem (O-Verstraete)

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be as above, then

$$
\begin{equation*}
\sum_{i=1}^{m}\binom{\left|A_{i} \cap C_{i}\right|+\left|B_{i}\right|}{\left|B_{i}\right|}^{-1} \leq 1 \tag{2}
\end{equation*}
$$

This follows by letting $\mathcal{D}:=\left\{D_{i}=A_{i} \cap C_{i}\right\}$ and noting that $(\mathcal{B}, \mathcal{D})$ is a Bollobás set pair.

Fixing the ground set [n], one can also ask what is

$$
\beta_{3,2}(n):=\max \{|(\mathcal{A}, \mathcal{B}, \mathcal{C})|:(\mathcal{A}, \mathcal{B}, \mathcal{C}) \text { threshold } t=2\} ?
$$

Erdős, Goodman and Pósa Correspondence

Figure: Consider the 3-partite 3-uniform hypergraph $K_{n, n, n} \backslash M$ with parts $U=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ and consider covering this graph with complete 3 -partite 3 -uniform hypergraphs.

We have that $K_{n, n, n} \backslash M=\left\{\left(u_{i}, v_{j}, w_{k}\right):|\{i, j, k\}| \geq 2\right\}$. Suppose we have that $\left\{\mathcal{C}_{i}\right\}_{i \in[m]}$ is such a covering of $K_{n, n, n} \backslash M$.

EGP in $(3,2)$ Setting

Figure: We have a correspondence between biclique covers of $K_{n, n, n} \backslash M$ and Bollobás set triples of threshold $t=2$.

As in the case where $k=t=2$, we have that

$$
\nu_{3,2}(n)=b c\left(K_{n, n, n} \backslash M\right)=\min \left\{m: \beta_{3,2}(m) \geq n\right\} .
$$

Bollobás Set triples of threshold $t=3$

Theorem (O-Verstraete)

Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}, \mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ and
$\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be families of finite sets such that
$A_{i} \cap B_{j} \cap C_{k} \neq \emptyset$ if and only if $i, j, k \in[m]$ are all distinct. Then

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{\substack{j=1 \\ j \neq i}}^{m}\binom{\left|A_{i} \cup B_{j} \cup C_{i}\right|}{\left|A_{i}\right|,\left|B_{j} \backslash A_{i}\right|} \leq 1 \tag{3}
\end{equation*}
$$

Fixing the ground set [n], one can also ask what is

$$
\beta_{3,3}(n):=\max \{|(\mathcal{A}, \mathcal{B}, \mathcal{C})|:(\mathcal{A}, \mathcal{B}, \mathcal{C}) \text { threshold } t=3\} ?
$$

Erdős, Goodman and Pósa Correspondence

Figure: Consider the 3-partite 3 uniform hypergraph $K_{n, n, n} \backslash \widetilde{M}_{3,3}$ with parts $U=\left\{u_{1}, u_{2}, \ldots u_{n}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ and consider covering this graph with complete 3-partite 3-uniform hypergraphs.

We have that $K_{n, n, n} \backslash \widetilde{M}_{3,3}=\left\{\left(u_{i}, v_{j}, w_{k}\right):|\{i, j, k\}|=3\right\}$. Suppose we have that $\left\{\mathcal{C}_{i}\right\}_{i \in[m]}$ is such a covering of $K_{n, n, n} \backslash \widetilde{M}_{3,3}$.

EGP in $(3,3)$ Setting

\mathcal{C}_{i}

Figure: We have a correspondence between biclique covers of $K_{n, n, n} \backslash \widetilde{M}_{3,3}$ and Bollobás set triples of threshold $t=3$.

As in the case where $k=t=2$, and $k=3$ with $t=2$ we have

$$
\nu_{3,3}(n)=b c\left(K_{n, n, n} \backslash \widetilde{M}_{3,3}\right)=\min \left\{m: \beta_{3,3}(m) \geq n\right\} .
$$

Bollobás Set k-tuples of threshold t

We will consider k-tuples consisting of families $\mathcal{A}_{j}: 1 \leq j \leq k$ of finite sets with a condition on when the k-wise intersections are nonempty. For integers $k \geq t \geq 2$, we say a Bollobás set k-tuple with threshold t is a sequence $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}\right)$ of families of sets where $\mathcal{A}_{j}=\left\{A_{j, i}: 1 \leq i \leq m\right\}$ where

$$
\bigcap_{j=1}^{k} A_{j, i_{j}} \neq \emptyset \quad \text { if and only if } \quad\left|\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}\right| \geq t
$$

When $k=t=2$, we have precisely a Bollobás set pair. The quantity m is called the size of the Bollobás set k-tuple.

Bollobás Set k-tuples Inequality

We are able to prove a Bollobás type inequality for a Bollobás set k-tuple with threshold t.

Consider the specific case where $k=5$ and $t=3$ and let $\mathcal{A}^{(1)}=\left\{A_{i}^{(1)}\right\}_{i \in[m]}$, and $\mathcal{A}^{(2)}, \ldots, \mathcal{A}^{(5)}$ be defined similarly so that $\left(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}, \ldots, \mathcal{A}^{(5)}\right)$ is a Bollobás set 5-tuple with threshold $t=3$.

Recall, the Bollobás type Inequality for 3-tuples of threshold $t=3$:

$$
\sum_{i=1}^{m} \sum_{\substack{j=1 \\ j \neq i}}^{m}\binom{\left|A_{i} \cup B_{j} \cup C_{i}\right|}{\left|A_{i}\right|,\left|B_{j} \backslash A_{i}\right|} \leq 1
$$

Bollobás Set k-tuples Inequality Cont.

Fix a surjective map $\phi:[5] \rightarrow[3]$. Say $\phi(1)=\phi(3)=1$, $\phi(2)=\phi(5)=2$ and $\phi(4)=3$.

Define $\mathcal{D}(\phi)^{(1)}=\left\{D_{i}(\phi)^{(1)}:=A_{i}^{(1)} \cap A_{i}^{(3)}\right\}_{i \in[m]}$ $\mathcal{D}(\phi)^{(2)}=\left\{D_{i}(\phi)^{(2)}:=A_{i}^{(2)} \cap A_{i}^{(5)}\right\}_{i \in[m]}$ $\mathcal{D}(\phi)^{(3)}=\left\{D_{i}(\phi)^{(3)}:=A_{i}^{(4)}\right\}_{i \in[m]}$

Claim

$\left(\mathcal{D}(\phi)^{(1)}, \mathcal{D}(\phi)^{(2)}, \mathcal{D}(\phi)^{(3)}\right)$ is a Bollobás set 3-tuple of threshold $t=3$ and hence we have that

$$
\sum_{i=1}^{m} \sum_{\substack{j=1 \\ j \neq i}}^{m}\binom{\left|D_{i}(\phi)^{(1)} \cup D_{j}(\phi)^{(2)} \cup D_{i}(\phi)^{(3)}\right|}{\left|D_{i}(\phi)^{(1)}\right|, \mid D_{i}(\phi)^{(2)} \backslash D_{i}(\phi)^{(1)}} \leq 1
$$

Bollobás Set k-tuples Inequality Cont.

Observe that we can do this for all $\phi:[5] \rightarrow[3]$ where ϕ is a surjection, and to this end let

$$
S(\phi, 5,3, m):=\sum_{i=1}^{m} \sum_{\substack{j=1 \\ j \neq i}}^{m}\binom{\left|D_{i}(\phi)^{(1)} \cup D_{j}(\phi)^{(2)} \cup D_{i}(\phi)^{(3)}\right|}{\left|D_{i}(\phi)^{(1)}\right|, \mid D_{i}(\phi)^{(2)} \backslash D_{i}(\phi)^{(1)}} .
$$

Theorem

Let $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{5}\right)$ be a Bollobás set 5-tuple of thereshold $t=3$ and let $\Phi:=\{\phi:[5] \rightarrow[3]$ surjection $\}$, then we have that

$$
\max _{\phi \in \Phi} S(\phi, 5,3, m) \leq 1
$$

EGP in (k, t) Setting

Consider the complete k-partite k-uniform hypergraph with parts $X_{i}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i n}\right\}$ for $1 \leq i \leq k$. Then, we let
$\widetilde{M}:=\left\{x_{1 i_{1}} \ldots x_{k i_{k}}:\left|\left\{i_{1}, \ldots, i_{k}\right\}\right|<t\right\}$ and consider the hypergraph

$$
H(k, t, n):=K_{n, n \ldots, n} \backslash \widetilde{M} .
$$

Hence we have that $e=\left(x_{1}, i_{1}, \ldots, x_{k, i_{k}}\right)$ is so that

$$
e \in H(k, t, n) \Longleftrightarrow\left|\left\{i_{1}, \ldots, i_{k}\right\}\right| \geq t
$$

Using the Erdős-Goodman-Pósa Correspondence, we have
\{Bollobás set k-tuples of threshold $t\} \leftrightarrow\{$ biclique covers of $\mathrm{H}(\mathrm{k}, \mathrm{t}, \mathrm{n})\}$

EGP in (k, t) Setting Cont.

Given $t \leq k \in \mathbb{N}$, let $\beta_{k, t}(m)$ be the largest Bollobás set k-tuple with threshold t on ground set [m], then we have that

$$
\begin{equation*}
\nu_{k, t}(n)=b c(H(k, t, n))=\min \left\{m: \beta_{k, t}(m) \geq n\right\} . \tag{4}
\end{equation*}
$$

Equation (4) yields that a probabilistic construction of a Bollobás set k-tuple of threshold t and hence a lower bound of $\beta_{k, t}(m)$ yields an upper bound on the biclique covering number $b c(H(k, t, n))$.

We can get a lower bound on $b c(H(k, t, n))$ through a variety of different techniques.

Probabilistic construction when $t=2$

Recall in the case where the threshold $t=2$ we are considering the k-partite, k-regular hypergraph where we remove a matching which we denote as $H(k, 2, n)$. We have

Figure: Observe that $\left|e_{i}\right|=\frac{n(k-1)}{k}$ and that $\bigcap_{i} e_{i}=\emptyset$
Let f_{1}, \ldots, f_{x} be random bijections from $\bigcup_{i=1}^{k} e_{i} \rightarrow[n]$ and let

$$
A_{i, j}=f_{j}\left(e_{i}\right) \text { and } \mathcal{A}_{i}=\left\{A_{i, j}\right\}_{j \in[x]} .
$$

Probabilistic Construction when $t=2$ Cont.

We have that $A_{1, j} \cap A_{2, j} \cap \cdots \cap A_{k, j}=\emptyset$ for all $j \in[x]$. We then compute the expected number of k-tuples $\left\{i_{1}, \ldots, i_{k}\right\}$ so that $\left|\left\{i_{1}, \ldots, i_{k}\right\}\right| \geq 2$ and $A_{1, i_{1}} \cap A_{2, i_{2}} \cap \cdots \cap A_{k, i_{k}}=\emptyset$ and show this is small for suitable x.

Theorem (O-Verstraete)

For $n \geq k \geq 2$, we have that

$$
\frac{k}{\log (k e)} \leq \frac{b c(H(k, 2, n))}{\log n} \leq \frac{k-1}{-\log \left(1-e^{-1}\right)}
$$

Probabilistic Construction when $t=k$

We have the following probabilistic construction of a Bollobás set k-tuple of threshold $t=k$. Consider random and uniform colorings f_{1}, \ldots, f_{N} where $f_{i}:[n] \rightarrow[k]$ and define $A_{l, i}=f_{i}^{-1}(I)$ and $\mathcal{A}_{I}=\left\{A_{l, i}\right\}_{i \in[N]}$.

We have that whenever $\left|\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}\right|<k$, that $A_{1, i_{1}} \cap A_{2, i_{2}} \cap \cdots \cap A_{k, i_{k}}=\emptyset$. Letting X be the number of k-tuples $\left\{i_{1}, \ldots, i_{k}\right\}$ with disjoint entries whose k-wise intersection is empty;

$$
\mathbf{E}[X] \leq N^{k}\left(1-\frac{1}{k^{k}}\right)^{n}<\frac{N}{2}
$$

provided that $N<\left(\frac{k^{k}}{k^{k}-1}\right)^{\frac{n}{k-1}}$.

Probabilistic Construction when $t=k$ Cont.

Hence, we have the lower bound $\beta_{k, k}(n) \geq\left(\frac{k^{k}}{k^{k}-1}\right)^{\frac{n}{k-1}}$ which yields an upper bound on $\mathrm{bc}(H(k, k, n))$.

The lower bound follows from a more involved double-counting argument. We thus have that:

Theorem (O-Verstraete)

For $k \geq 2$, if we take $n \geq k^{3}$, then

$$
\frac{1}{3 k}(k-1)^{k-1} \leq \frac{b c(H(k, 2, n))}{\log (n)} \leq \frac{2}{\log (e)} k^{k+1}
$$

Lower Bound on $\mathrm{bc}(H(k, t, n))$ when $2<t<k$

We will consider the case where $k=6$ and $t=4$ below.

Figure: Given a subset $T \subset[k]$ so that $|T|=k-t+1$, we may consider the hypergraph $H_{T}(1) \subset H(k, t, n)$ where we force all indices in T to have vertex 1 .

By considering the fixed $k-t+1$ elements for a given T, we have a link $(t-1)$-uniform hypergraph which is naturally isomorphic to $H(t-1, t-1, n-1)$.

Lower Bound on $\mathrm{bc}(H(k, t, n))$ when $2<t<k$ Cont.

We therefore need at least $b c(H(t-1, t-1, n-1))$ bicliques in a biclique cover to cover edges in $H_{T}(1)$.

Distinct subsets $T, T^{\prime} \in[k]^{(k-t+1)}$ cannot be covered by the same biclique, which yields that

$$
\binom{k}{k-t+1} \mathrm{bc}(H(t-1, t-1, n-1)) \leq \mathrm{bc}(H(k, t, n)) .
$$

Using the bound on $\mathrm{bc}(H(t-1, t-1, n-1)$, we get

$$
\binom{k}{t-1} \frac{(t-2)^{t-2}}{3(t-1)} \leq \frac{\mathrm{bc}(H(k, t, n)}{\log (n)}
$$

Result when $2<t<k$

An involved probabilistic construction of a biclique cover \mathcal{C} where

$$
|\mathcal{C}| \leq\binom{ k}{t-1} \frac{t+1}{t} t^{t} \log (n)
$$

yields the upper bound and hence we have that

Theorem (O-Verstraete)

For $k \geq 2$, if we take $n \geq k^{3}$, then

$$
\binom{k}{t-1} \frac{(t-2)^{t-2}}{3(t-1)} \leq \frac{b c(H(k, t, n))}{\log (n)} \leq\binom{ k}{t-1} \frac{t+1}{t} t^{t}
$$

Relating back to $\beta_{k, t}(n)$

Using $b c(H(k, t, n))=\min \left\{m: \beta_{k, t}(m) \geq n\right\}$, we have that

Theorem (O-Verstraete)

$$
\begin{gathered}
\frac{1-\log (e-1)}{k-1} \leq \frac{\log \beta_{k, 2}(n)}{n} \leq \frac{\log (k e)}{k} \\
\frac{1}{(k-1) k^{k}} \leq \frac{\log \beta_{k, k}(n)}{n} \leq \frac{3 k}{(k-1)^{k-1}} \\
\quad \leq \frac{\log \beta_{k, t}(n)}{n} \leq
\end{gathered}
$$

Open Problems

1 Improve the bounds on $\mathrm{bc}(H(k, t, n))$.
2 Find an explicit construction of an exponential size Bollobás set 3-tuple of threshold 3.

3 Show that the Bollobás type Inequality is tight in any case where $t \geq 3$.
4 Compute $\lim _{n \rightarrow \infty} \frac{\mathrm{bc}(H(3,2, n))}{\log (n)}$ if it exists

Thank you for listening!

